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Question 1

The following questions relate to power calculations for an experiment. Let D̄ = Pr(D = 1) be the

share of people randomized into getting treatment. You want to perform a “no-effect” test on δ in

the regression Yi = α+ δDi + ui.

a) What is the D̄ that maximizes power, for any N , α and σ2?

Answer a)

To answer this question, we begin by clarifying what is meant by a “no-effect” test. In the

context of the proposed regression model, this corresponds to testing H0 : δ = 0 against the

alternative H1 : δ ̸= 0. That is, we are interested in determining whether the treatment

assignment Di - equal to 1 for treated individuals and 0 for those in the control group -

has any effect on the outcome Yi. A “no-effect” test is thus a test of whether the estimated

treatment effect δ is statistically distinguishable from zero.

Refresher

Recap on Power

Statistical power refers to the probability that a test correctly rejects a false null hypoth-

esis. In other words, it is the likelihood of detecting a real effect when one exists. Power

is formally defined as 1−β, where β is the probability of a Type II error - failing to reject

the null hypothesis even though it is false.

To understand power, consider the four possible outcomes of a hypothesis test:

Outcome of Test True State: H0 is True True State: H0 is False

Fail to Reject H0 Correct Decision (No Effect) Type II Error (β)

Reject H0 Type I Error (α) Correct Decision (Power = 1− β)

Power is important because it reflects a test’s ability to detect true effects and avoid

false negatives. A test with low power may lead researchers to incorrectly conclude that
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there is no effect, potentially missing meaningful findings. Ensuring adequate power is

therefore a critical step in designing empirical research.

If this is not clear let me clarify using a graph (easily created in Python, I’ll post the

code):
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Figure 1: Visualizing Power

The graph illustrates the concept of statistical power using a practical example. Suppose a

researcher is testing whether a new teaching assistant (TA) method improves student test

scores. The null hypothesis (H0) is that the method has no effect, while the alternative

hypothesis (H1) is that it leads to higher scores.

The blue curve represents the distribution of test statistics under the null hypothesis

- that is, assuming the TA method does not actually improve scores. The red curve

represents the distribution under the alternative hypothesis - if the method truly has an

effect and raises scores, say by 2 points on average.

The vertical dashed line is the critical value determined by the significance level α = 0.05

- i.e. 1.64. This threshold marks the boundary above which the test would reject the

null hypothesis. If the test statistic falls to the right of this line, the result is considered

statistically significant (standard up to now).

Start with the blue curve, which shows the distribution of test statistics assuming the

null hypothesis is true - that is, the TA method has no effect. The area under this curve

to the right of the vertical dashed line is shaded blue. This is the Type I error region,
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also called α. It represents the probability of rejecting the null hypothesis even though

it’s actually true. In our context, this would mean concluding that the new TA method

improves test scores, when in reality, it doesn’t.

Next, consider the red curve, which represents the distribution of test statistics when the

alternative hypothesis is true - that is, when the TA method really does improve scores.

The area under the red curve to the right of the dashed line is shaded green. This area

is called the power of the test. It tells us the probability of correctly rejecting the null

hypothesis - in other words, detecting the effect when it’s really there. In our example, the

researcher has designed the study to have 80% power, which means there’s an 80% chance

the test will successfully detect the improvement if the TA method is truly effective.

But not all outcomes are ideal. There’s still a chance the test misses the effect. That’s

shown by the orange shaded area under the red curve to the left of the dashed line. This

is the Type II error region, or β. It represents the probability of failing to reject the null

hypothesis when it is actually false - meaning the TA method does help, but the test

doesn’t pick it up. In this case, with 80% power, that probability is 20

So in short: the green region is what we aim for - catching real effects. The orange

region is the risk of missing them. And the blue region is the chance of being misled into

thinking there’s an effect when there isn’t.

This visual helps clarify the trade-offs in hypothesis testing. The larger the green region

- the power - the more capable the test is of identifying real effects. That’s why power

analysis is crucial in designing experiments: it ensures that meaningful differences don’t

go undetected due to insufficient sample size or weak statistical design.

Power depends on several key parameters: the sample size N , the significance level α, the

variance of the outcome variable σ2, and the proportion of treated units D̄ = Pr(D = 1).

In this case, we’re asked to focus on the comparative statics for D̄, but I’m going to provide

something more also for the other components.

Consider the standard linear regression model used to estimate the treatment effect:

Yi = α+ δDi + ui (1)

where Di is a binary indicator for treatment. Assuming homoskedastic errors and random

assignment, the sampling variance of the OLS estimator δ̂ is (nothing new here):

Var(δ̂) =
σ2

N ·Var(Di)
(2)

Because Di is Bernoulli, Var(Di) = D̄(1− D̄), so:

Var(δ̂) =
σ2

N · D̄(1− D̄)
(3)

Taking the square root gives the standard error:

se(δ̂) =

√
σ2

N · D̄(1− D̄)
(4)
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The reason why we compute se(δ̂) is that it’s pretty well connected with the Minimum

Detectable Effect (MDE). It represents the smallest true effect size that a study is likely to

detect with a given level of statistical confidence. It depends on the significance level α, the

desired power q, the variability in the data, and the sample size. Intuitively, the MDE sets

the threshold above which a true treatment effect will be detected with high probability. If

the real effect of the treatment is smaller than the MDE, the test may fail to reject the null

hypothesis even though the treatment does in fact have some impact. In contrast, if the true

effect is equal to or larger than the MDE, the test will likely detect it.

This concept is central when designing experiments or evaluating their credibility. A study

with a large MDE is only capable of identifying relatively large effects and will likely miss more

subtle but potentially meaningful differences. On the other hand, a smaller MDE indicates

that the test is sensitive enough to detect even modest effects, provided that the data is not

too noisy and the sample size is sufficient.

The MDE is formally defined as the product of two components: the critical values from

the standard normal distribution (reflecting the chosen significance level and power) and the

standard error of the treatment effect estimator. Specifically, it is given by:

MDE =
(
z1−α/2 + zq

)
· se(δ̂) (5)

where z1−α/2 corresponds to the two-sided critical value for the significance level α, and zq

is the critical value ensuring power q. This expression reflects the fact that in order to reject

the null hypothesis with high probability under the alternative, the test statistic must fall far

enough away from zero. The larger the standard error - due to limited data or high noise -

the larger the MDE will be, meaning that only larger true effects can be reliably detected.

Therefore, this equation directly links the MDE to the concept of statistical power. For any

fixed α and N , the MDE tells us the smallest true effect size δ that the test can detect with

power q - that is, the smallest effect for which the probability of correctly rejecting the null

hypothesis reaches the desired power level. Inverting this logic: if the true effect is smaller

than the MDE, the test will have less than q power to detect it. In this sense, the MDE

defines the threshold between detectable and undetectable effects for a given design, making

it a critical diagnostic for whether your study is capable of detecting meaningful impacts.

Practically, the idea is that when you’re planning an experiment, the MDE tells you the

smallest effect your design can realistically hope to detect with confidence. If this MDE is

larger than the effect size you actually care about, the study will be underpowered, and even

real effects may go unnoticed.

In short, the MDE captures the smallest effect size that your design can “see” with high

confidence. Any effect smaller than this threshold might be real, but your test is not powerful

enough to detect it consistently.

Mathematically, maximizing power is equivalent to minimizing this MDE, which in turn
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requires maximizing D̄(1 − D̄). If you want, you can do the calculations, but to save time

you can see that because this is a quadratic expression achieves its maximum at D̄ = 0.5.

In the case you, fairly, don’t believe me then:

∂D̄(1− D̄)

∂D̄
= 0 ⇒ ∂D̄ − D̄2

∂D̄
= 1− 2D̄ = 0 ⇒ D̄ =

1

2
(6)

To conclude, the value of D̄ that maximizes the power of the test - regardless of N , α, or σ2

- is:

D̄ = 0.5 (7)

This corresponds to assigning half the sample to treatment and half to control.

Let me conclude with this excursus on the promised comparative statics of power and N , α

and σ2.

From the MDE equation (down below again for clarity):

MDE =
(
z1−α/2 + zq

)
·

√
σ2

N · D̄(1− D̄)
(8)

Since power increases when the MDE decreases, we can now interpret the effect of changing

each variable by analyzing how it affects the MDE.

Let’s start with the sample size N . A larger N reduces the standard error and therefore

lowers the MDE. Mathematically, we can write:

MDE ∝ 1√
N

(9)

This means that increasing the sample size improves the precision of the estimator and makes

it easier to detect smaller effects. Doubling the sample size, for instance, reduces the MDE

by a factor of
√
2. So, holding everything else fixed, increasing N leads to higher power.

Intuitively, more data helps sharpen the signal and reduces uncertainty in estimating δ.

Now consider the significance level α. The MDE increases with the critical value z1−α/2:

MDE ∝ z1−α/2 (10)

Lowering α - for example, from 0.05 to 0.01 - increases the required critical value, which in

turn raises the MDE. This makes it harder to reject the null hypothesis, and therefore reduces

power. In contrast, choosing a more lenient α decreases the MDE and increases power. This

illustrates a fundamental trade-off in hypothesis testing: a stricter test reduces the chance of

false positives (Type I error) but increases the chance of false negatives (Type II error).

Finally, think about the variance of the outcome variable, σ2. The MDE increases with the

square root of σ2:

MDE ∝
√
σ2 (11)
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So, higher variance in Yi means greater noise in the data, which inflates the standard error

and increases the MDE. As a result, the power of the test decreases. Conversely, reducing

the variance - either through better measurement or a more homogeneous sample - lowers the

MDE and increases the power of the test. The intuition is straightforward: the more noise in

the outcome, the harder it is to detect the treatment effect.

In short, to increase power (i.e., to reduce the MDE), you want a larger sample size, a less

conservative significance level, and a lower variance in outcomes. Each of these design choices

makes your experiment more likely to detect meaningful effects when they exist.

b) Suppose α = 0.01 and q = 0.8; Determine the MDE, expressed as multiple of se(δ̂).

Answer b)

This question asks us to compute the MDE in units of the standard error of δ̂, given a

two-sided test with significance level α = 0.01 and power q = 0.8.

We have already introduced the formula for the MDE:

MDE =
(
z1−α/2 + zq

)
· se(δ̂) (12)

This expression captures the fact that to detect an effect with probability q (i.e., to achieve

power q), the true effect must lie far enough from zero to exceed the critical threshold z1−α/2

with high probability under the alternative.

Since α = 0.01, the critical value for a two-sided test is:

z1−α/2 = z0.995 ≈ 2.576 (13)

And since q = 0.8, the corresponding quantile is:

zq = z0.8 ≈ 0.8416 (14)

Substituting these values into the formula:

MDE = (2.576 + 0.8416) · se(δ̂) = 3.4176 · se(δ̂) (15)

Therefore, the smallest effect size that can be reliably detected with 80% power at the 1%

level is approximately 3.42 times the standard error. If the true effect is smaller than this

threshold, the test will likely fail to reject the null even when the effect is real, because the

sampling variation around the estimated effect is too large relative to the size of the true

effect to consistently push the test statistic beyond the critical cutoff. In other words, most

realizations of the test statistic will fall within the acceptance region, making it hard to

distinguish the signal from the noise.

c) Suppose σ2 = 1 and α = 0.05; how large does N need to be in order to detect an effect size of

0.5 standard deviations with probability 0.8? (Hint: Take the solution from a), when needed)
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Answer c)

We are asked to determine the required sample size N to detect a treatment effect equal

to 0.5 standard deviations, with 80% power and a two-sided 5% significance level. Assume

homoskedasticity and random assignment to treatment.

From part (a), we know that under random assignment the variance of the OLS estimator is:

Var(δ̂) =
σ2

N · D̄(1− D̄)
⇒ se(δ̂) =

√
σ2

N · D̄(1− D̄)
(16)

The MDE is once again given by:

MDE =
(
z1−α/2 + zq

)
· se(δ̂) (17)

Here, the MDE is provided: we want to detect an effect of 0.5. Since σ2 = 1, this is already

expressed in standard deviation units. Substituting into the equation:

0.5 = (z1−α/2 + zq) ·

√
1

N · D̄(1− D̄)
(18)

Given α = 0.05, we have z1−α/2 = z0.975 ≈ 1.96, and q = 0.8 implies zq = z0.8 ≈ 0.8416.

Substituting:

0.5 = (1.96 + 0.8416) ·

√
1

N · D̄(1− D̄)
= 2.8016 ·

√
1

N · D̄(1− D̄)
(19)

Squaring both sides:

0.25 = 7.8489 · 1

N · D̄(1− D̄)
⇒ N · D̄(1− D̄) =

7.8489

0.25
= 31.3956 (20)

To maximize power, we use D̄ = 0.5, as we detected in point a), so D̄(1− D̄) = 0.25, which

yields:

N · 0.25 = 31.3956 ⇒ N =
31.3956

0.25
= 125.58 (21)

Rounding up, the required sample size is:

N = 126 (22)

That is, to detect an effect of 0.5 standard deviations with 80% power at the 5% level, under

homoskedastic errors and equal treatment allocation, you need a sample size of at least 126

- i.e. to clarify 63 individuals in the treatment group and 63 in the control group, assuming

the optimal 50/50 split as in part (a).
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Question 2

Askarov et al. (2023) - Selective and (mis)leading economics journals: Meta-research evidence -

report on a meta-meta analysis covering 167,753 parameter estimates from 368 distinct areas of

economics research. Read that paper.

The following exercise relates to one particular meta study that is part of their sample, on the link

between education and obesity: How and why studies disagree about the effects of education on

health: A systematic review and meta-analysis of studies of compulsory schooling laws (2018); by

Rita Hamad, Hannah Elser, David C. Tran, David H. Rehkopf, and Steven N. Goodman; Social

Science & Medicine, Volume 212, Pages 168–178.

The data from that meta-analysis are reproduced in the following table:

Effect Size 95% Confidence Interval)
-1.08 (-1.77, -0.40)
-0.09 (-0.85, 0.68)
-0.41 (-0.71, -0.12)
0.00 (-0.35, 0.35)
-0.40 (-1.69, 0.88)
-0.41 (-0.89, 0.07)
-0.96 (-1.59, -0.32)
0.19 (-0.45, 0.07)
0.30 (0.06, 0.54)
0.05 (-0.01, 0.10)
-0.17 (-0.79, 0.44)
-0.30 (-0.94, 0.34)
-1.37 (-2.53, -0.21)

Askarov et al. (2023) delete one of these estimates for being an outlier. It is not clear which one,

but lets assume it is the one with value 0.05 and confidence interval going from −0.01 to 0.10. As

a result of dropping it, there are 12 observations left.

This Paper

Askarov et al. (2023) conduct a meta-meta-analysis - a systematic review of 368 published

meta-analyses covering 167,753 empirical estimates - to evaluate the overall credibility of

empirical research in economics. Their study is motivated by growing concerns in the social

sciences about reproducibility, low statistical power, and the incentives driving publication

bias. By focusing on the output of 31 leading economics journals - including the top five -

they aim to assess whether the field reliably produces robust evidence or whether statistical

significance has become more a product of selective reporting than genuine discovery.

Their findings are striking. Across the field, the median statistical power of reported esti-

mates is just 7%, meaning that the vast majority of studies lack the ability to detect even

moderately sized true effects. In top five journals, power is even lower, at 5%, yet the share

of statistically significant results remains high. This disconnect - low power but many sig-

nificant findings - indicates widespread bias: many results that appear significant are in fact

likely false positives, driven by practices such as specification searching, p-hacking, or selec-

tive reporting. The authors quantify this using excess statistical significance (ESS), showing
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that 19% of reported results in leading journals are falsely positive, and that in the top five,

two-thirds of statistically significant findings are likely the product of selection bias.

To estimate this, the authors draw on recent innovations in meta-research methodology. They

use weighted least squares to estimate an average effect size in each of the 368 research areas,

and then assess the expected distribution of significant results under the assumption of no

selection bias. The excess between observed and expected significance provides a conservative

estimate of publication bias. Importantly, the paper finds that experimental studies - though

fewer in number - tend to have much higher power (median 78%) and lower excess significance,

suggesting that stricter designs lead to more credible results. In contrast, observational studies

dominate the literature and are much more vulnerable to distortion.

The authors argue that the incentives within economics - especially the premium placed on

statistically significant results for publication, hiring, and promotion - have fostered a research

culture where exaggerated findings proliferate. Even top journals, despite their reputation,

are not immune; in fact, they may exhibit stronger selection for significance than other outlets.

This finding challenges the common assumption that prestige correlates with quality.

Ultimately, the paper is both a diagnosis and a call to action. Askarov et al. urge the discipline

to adopt higher standards of transparency, preregistration, and reporting, and to reevaluate

the editorial and institutional pressures that incentivize misleading practices. While their

results may not generalize to every subfield or journal, they present a compelling empirical

case that economics, as currently practiced, often fails to meet the basic statistical standards

required for credible science. By turning the tools of meta-analysis back onto the discipline

itself, the study offers a sobering but necessary reckoning with the state of empirical research

in economics.

a) Use the “fixed effects” meta analysis to compute the average effect. The formula is

µ̂ =

∑k
i=1wiyi∑k
i=1wi

wi = 1/SE2
i

where yi is the effect size and SE2
i is the standard error of the i-th estimate. The weighting

aggregates the information efficiently, provided there is no heterogeneity in the underlying

effect.

Answer a)

Among the 13 studies reported in the Hamad et al. (2018) meta-analysis on the effect of

education on obesity, one estimate is excluded by Askarov et al. (2023) for being an outlier.

While they do not specify which, we are instructed to assume that it is the study reporting

an effect size of 0.05 with a 95% confidence interval of (-0.01, 0.10). At first glance, this

estimate does not appear to be an outlier in terms of magnitude: it is near zero and falls

within the central range of the other estimates. However, what sets it apart is not the size
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of the effect, but the extremely narrow confidence interval, which implies an unusually high

level of precision.

Figure 2: The ”Original” Table from Hamad et al. (2018)

This becomes even clearer when looking at the plot above. While most studies show wide con-

fidence intervals - some spanning more than 2 standard deviations - the estimate in question

(Li, 2015) is tightly clustered around zero, with virtually no uncertainty. If retained in the

analysis, such a highly weighted observation could disproportionately influence the pooled

estimate, despite being inconsistent with the broader variability in the literature. From a

meta-analytic perspective, this justifies excluding the observation - not because the effect

is “too small” but because the precision is so high, that we could potentially violate the

assumption that all standard errors are well-estimated.

At the same time, excluding this particular study is unlikely to dramatically shift the final

result. Since its effect size is essentially zero, removing it slightly increases the influence

of studies showing either larger negative or positive effects, but without strongly biasing

the result in any particular direction. Indeed, many of the retained studies suggest negative

effects - especially the larger ones like Storger (2007), James (2013), and Braga (2013, female)

- which points to an overall tendency for education to reduce obesity.

This brings us to a related point. In their interpretation, Hamad et al. write:

“The results of the meta-analysis suggest that a year of education is associated with

a 20% reduced risk of obesity.”

This statement raises a natural question: is this what we also find when applying a fixed

effects meta-analysis? Using the standard formula, we compute a precision-weighted average
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of the 12 retained estimates - instead of 13 as in Hamad et al.:

µ̂ =

∑12
i=1wiyi∑12
i=1wi

, with wi =
1

SE2
i

(23)

Here, the standard error SEi for each study is not reported directly but can be inferred

from the 95% confidence interval surrounding the point estimate. Assuming the confidence

intervals are symmetric and based on a normal distribution - a standard approach in meta-

analysis and large-sample econometric applications - we can recover the standard error using

the following reasoning. A 95% confidence interval for a normally distributed estimate takes

the form:

CI = yi ± 1.96 · SEi (24)

This expression indicates that the confidence interval spans 1.96 standard errors above and

below the point estimate yi. As such, the total width of the confidence interval - that is, the

distance from the lower bound to the upper bound - is equal to:

Upper bound− Lower bound = 2× 1.96 · SEi (25)

This equation can be rearranged to isolate the standard error, yielding:

SEi =
Upper bound− Lower bound

2× 1.96
(26)

This method allows us to compute a consistent estimate of SEi for each study, provided the

normality and symmetry assumptions hold. In contexts where estimates are based on odds

ratios or logistic regression, this method would not apply directly, and a log transformation

would be needed. However, that does not appear to be the case in this particular meta-

analysis.

Once the weights are computed, we implement Eq. 23 to calculate the fixed effects meta-

analytic estimate. The result is:

µ̂ ≈ −0.083 (27)

This value reflects a modest but negative effect, suggesting that each additional year of

education is associated with an average 8.3% reduction in the probability of being obese. This

aligns directionally with the interpretation given in the original paper - that more education

is protective against obesity - but it appears smaller in magnitude than the headline figure of

a 20% risk reduction - yet this is also partly true to the fact that the authors in that paper

use a random-effect estimator.
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In sum, the fixed effects meta-analysis supports the conclusion that increased education tends

to reduce the risk of obesity. While the magnitude we estimate is somewhat smaller than

that emphasized in the paper, it points in the same direction and remains substantively

meaningful. Moreover, the exclusion of the unusually precise but near-zero estimate from Li

(2015) appears justified, as it does not substantially alter the general pattern of results and

avoids the potential distortion introduced by its excessive statistical weight.

In terms of coding, the answer comes from this quite straightforward code:

# Define data with study names

data = [

{"study": "Braga (2013, female)", "effect_size": -1.08,

"lower": -1.77, "upper": -0.40},

{"study": "Braga (2013, male)", "effect_size": -0.09,

"lower": -0.85, "upper": 0.68},

{"study": "Brunello (2013, female)", "effect_size": -0.41,

"lower": -0.71, "upper": -0.12},

{"study": "Brunello (2013, male)", "effect_size": 0.00,

"lower": -0.35, "upper": 0.35},

{"study": "Fletcher (2015)", "effect_size": -0.40,

"lower": -1.69, "upper": 0.88},

{"study": "Grabner (2009b)", "effect_size": -0.41,

"lower": -0.89, "upper": 0.07},

{"study": "James (2013)", "effect_size": -0.96,

"lower": -1.59, "upper": -0.32},

{"study": "Kemptner (2011, female)", "effect_size": 0.19,

"lower": -0.45, "upper": 0.07},

{"study": "Kemptner (2011, male)", "effect_size": 0.30,

"lower": 0.06, "upper": 0.54},

{"study": "Lindeboom (2009, female)", "effect_size": -0.17,

"lower": -0.79, "upper": 0.44},

{"study": "Lindeboom (2009, male)", "effect_size": -0.30,

"lower": -0.94, "upper": 0.34},

{"study": "Storger (2007)", "effect_size": -1.37,

"lower": -2.53, "upper": -0.21},

]

# Create DataFrame

df = pd.DataFrame(data)

# Calculate SE and weights
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df["SE"] = (df["upper"] - df["lower"]) / (2 * 1.96)

df["weight"] = 1 / df["SE"]**2

df["weighted_effect"] = df["weight"] * df["effect_size"]

# Compute fixed effect average and convert to float

mu_hat = float(df["weighted_effect"].sum() / df["weight"].sum())

mu_hat

b) Following Askarov et al. (2023) we will treat µ̂ as the true effect size. This allows us

to compute the ex-post power for each contributing study, assuming a two-tailed test is

conducted at the 5% significance level. The power formula is given in equation (1) of the

paper. Compute the power for each study, using your result on µ̂. What is the average power

in this area of economics research? There is the general idea that a reliable study should have

a power of at least 80%. Is this goal met in this literature?

Answer b)

Following Askarov et al. (2023), we treat the fixed effect estimate from part (a), µ̂ = −0.083,

as the true effect size δ. This allows us to compute the ex-post (retrospective) statistical

power for each study included in the meta-analysis, using the formula they provide:

Poweri = 1− Φ

(
1.96− |δ|

SEi

)
(28)

where Φ(·) is the cumulative distribution function of the standard normal distribution, and

SEi is the standard error of study i, computed from its reported 95% confidence interval.

This formula captures the probability that a study would detect the true effect if it conducted

a two-tailed test at the 5% significance level.

The power values are computed using the following code, which mimics what we just de-

scribed:

# Compute retrospective power using Askarov et al.’s formula

df["power"] = 1 - norm.cdf(1.96 - abs(mu_hat) / df["SE"])

# Compute average power

average_power = df["power"].mean()

print(df[["study", "SE", "power"]])

print(f"Average power: {average_power:.3f}")

Using this approach, we find that the power values across individual studies are strikingly

low. Only one study (Kemptner 2011, male) has power above 10%, and several have power
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below 5%. The highest power observed is approximately 10.05%, and the lowest is just 3.34%.

The average statistical power across all 12 studies is:

Average power ≈ 5.6% (29)

For the full check, look below:

Table 1: Retrospective power for each study

Study SE Power

Braga (2013, female) 0.349490 0.0426

Braga (2013, male) 0.390306 0.0404

Brunello (2013, female) 0.150510 0.0799

Brunello (2013, male) 0.178571 0.0678

Fletcher (2015) 0.655612 0.0334

Grabner (2009b) 0.244898 0.0527

James (2013) 0.323980 0.0443

Kemptner (2011, female) 0.132653 0.0916

Kemptner (2011, male) 0.122449 0.1005

Lindeboom (2009, female) 0.313776 0.0451

Lindeboom (2009, male) 0.326531 0.0442

Storger (2007) 0.591837 0.0345

This result is far below the conventional benchmark of 80%, which is typically considered the

minimum threshold for a study to be deemed adequately powered. In other words, even if

the true effect of education on obesity were indeed a reduction of 8.3 percentage points, the

vast majority of studies in this literature would not have had sufficient statistical power to

detect it.

But can power really be this low?

It helps to look at a concrete case. Consider Braga (2013, female), which reports a confidence

interval from −1.77 to −0.40. This corresponds to a standard error of:

SE =
−0.40− (−1.77)

2× 1.96
=

1.37

3.92
≈ 0.35 (30)

Using the fixed effect estimate |δ| = 0.083, we compute:

|δ|
SE

=
0.083

0.35
≈ 0.237 (31)

Power = 1− Φ(1.96− 0.237) = 1− Φ(1.723) ≈ 1− 0.9574 = 0.0426 (32)
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This confirms that the power is only around 4.3% - shockingly far from the 80% threshold.

Why is this the case?

Computationally, the key issue is that the typical standard errors are large - ranging from

0.12 to 0.65 - relative to the ex-post effect size of 0.083. In other words, we are trying to

detect a relatively small signal buried in a substantial amount of noise. The signal-to-noise

ratio is very low, making statistically significant findings highly unlikely unless the study is

extremely well-powered or the effect is much larger than what we believe to be true.

This finding is entirely consistent with the broader critique raised by Askarov et al. (2023):

the vast majority of published studies in empirical economics - particularly those using small

samples or imprecise instruments - are underpowered. Even if a true effect exists, the studies

are unlikely to detect it. This undermines the evidentiary value of both significant and

non-significant results, and helps explain why replication and meta-analytic synthesis are so

crucial.

In sum, the goal of achieving 80% power is clearly not met in this segment of the literature

on education and health. The extremely low power documented here raises serious concerns

about the reliability of individual studies and supports ongoing calls for larger samples, more

precise designs, and improved publication standards.

c) You can note that 5 out of the 12 studies in Hamad et al. (2018) display a statistically

significant result. This is a rate of 42%. Askarov et al. (2023) devise a method to check for

excess statistical significance (i.e., publication bias), taking again µ̂ as the true effect size.

For example, a single effect is statistically significant, if |Zi| > 1.96, i.e. |bi| > 1.96 × SEi.

But if we know the true µ, we can compute this probability (which equals the power), add

over all 12 studies, and get the expected number of H0-rejections. Askarov et al. modify this

method slightly, to account for additional heterogeneity in true effect sizes, see their equation

(5). For the Hamad study, they report an estimate τ̂2 = 0.1138 in a data appendix. Use this

number to compute the expected number of statistically significant results, and compare it

to the observed number of 5. What do you conclude?

Answer c)

To investigate whether the number of statistically significant findings in Hamad et al. (2018)

is consistent with the true underlying effect, we follow the procedure proposed by Askarov

et al. (2023) to test for excess statistical significance - a formal way to detect potential

publication bias.

But what does “excess statistical significance” actually mean? In essence, it refers to a

situation in which more statistically significant results are observed than we would expect

given the best available estimate of the true effect size. If this happens systematically across

a body of literature, it raises concerns that only “significant” results are being published, or

that researchers may have manipulated specifications to achieve significance - both classic
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signs of publication bias or p-hacking. The concept matters because it helps distinguish

genuine evidence accumulation from patterns driven by selective reporting.

In the Hamad et al. meta-analysis of the link between education and obesity, 5 out of the 12

studies report a statistically significant coefficient at the 5% level - i.e., where |bi| > 1.96 ·SEi.

This corresponds to an observed rejection rate of 42%.

There are two ways to verify this count. One is manual - visually checking the confidence

intervals plotted in the paper (e.g., Figure 2). Alternatively, you can compute it directly with

code:

# Step 1: Compute observed significant results (|b_i| > 1.96 * SE_i)

df["observed_sig"] = (np.abs(df["effect_size"]) > 1.96 * df["SE"]).astype(int)

observed_significant = df["observed_sig"].sum()

This confirms that five studies reject the null hypothesis of no effect.

To assess whether this rejection rate is unusually high, we follow Askarov et al. in treating

the fixed-effect estimate from part (a), µ̂ = −0.083, as the true average effect size. However,

we must also account for heterogeneity across studies: the fact that not all true effects

are necessarily identical. Some variation in estimated effects may reflect true differences in

populations or contexts, not just sampling noise.

To adjust for this, Askarov et al. assume that the true effect in each study is drawn from

a normal distribution with mean µ̂ and variance τ̂2. The value of τ̂2 = 0.1138 is specific to

the Hamad meta-study and reported in the data appendix (Not extremely easy to find, but

if interested you can find it here). We can take it for granted.

Why is the variance important? Because even if the average effect is small, some studies may

draw large effects simply by chance, especially if the underlying distribution is wide. In this

sense, modeling heterogeneity gives the benefit of the doubt to the data - it allows for true

variation, not just sampling noise.

Under this framework, the expected probability that study i produces a statistically significant

result is:

Esigi = 1− Φ

1.96 · SEi − |µ̂|√
SE2

i + τ̂2

 (33)

This is based on Equation (4) in Askarov et al., and reflects the chance that the estimated co-

efficient exceeds the 1.96 standard-error threshold given a randomly drawn true effect centered

at µ̂ with variance τ̂2. Summing these probabilities over all 12 studies yields the expected

number of rejections under this model:

16

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjoes.12598&file=joes12598-sup-0001-SuppMat.docx


12∑
i=1

Esigi ≈ 2.012 (34)

These steps are easily done in the computation:

# Step 2: Compute Z_i using Equation (4)

df["Z_i"] = (1.96 * df["SE"] - np.abs(mu_hat)) / np.sqrt(df["SE"]**2

+ tau_squared)

# Step 3: Compute expected significance probability Esig_i

df["Esig_i"] = 1 - norm.cdf(df["Z_i"])

# Step 4: Compute expected number of significant results

expected_significant = df["Esig_i"].sum()

So, although 5 statistically significant effects were observed, we would expect only about 2,

if all studies were analyzing true effects drawn from the same underlying distribution.

To formally test whether this gap is meaningful, we apply the PSST statistic (Equation 5 in

Askarov et al.):

ZPSST =
Pss − Esig√

Esig · (1− Esig)/k
=

5− 2.012√
(2.012 · (1− 2.012/12))/12

≈ 27.71 (35)

Or:

# Step 5: Compute PSST test statistic (Equation 5)

Esig_bar = df["Esig_i"].mean()

Z_psst = (observed_significant - expected_significant) /

np.sqrt(Esig_bar * (1 - Esig_bar) / k)

This Z-statistic is extremely large - far beyond conventional significance thresholds. It pro-

vides very strong evidence that the observed number of significant results is too high given

what would be expected under a plausible distribution of true effect sizes.

This is statistical evidence of excess significance, hinting possiblly towards high publication

bias. That is, the findings we observe in the literature may not reflect the full picture of the

studies conducted. It is likely that studies showing small or null effects are either less likely

to be published or are selectively excluded from analysis.

This test thus highlights not only a technical problem in estimation, but a systemic issue in

research: published economics research may overstate the strength or consistency of effects

due to incentives in the publication process.
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d) Why does a low power mean that the majority of “statistically significant” findings published

in the literature are likely false?

Answer d)

To understand why the statement is true, recall what statistical power means: it is the

probability that a test correctly rejects the null hypothesis when the alternative is true.

When power is low, the test is rarely able to detect true effects - even when they exist. But

at the same time, the false positive rate (the probability of rejecting the null when it is true)

remains fixed at the nominal significance level, typically 5%.

This creates a distortion. In a setting where: most null hypotheses are true, or, true effects

are small and hard to detect, or, researchers run many tests (formally or informally), then

many of the statistically significant results that do appear will not reflect true effects, but

rather noise. This is especially problematic when these results are used to inform policy or

theory.

Moreover, low power doesn’t just increase the chance of false positives - it also biases the

magnitude of reported effects. In underpowered studies, only estimates that happen to be

“large enough” - due to random variation - cross the significance threshold. As a result, the

literature becomes populated with overestimated effect sizes, a phenomenon often referred to

as the winner’s curse. Over time, this distorts our understanding of causal relationships: pub-

lished estimates appear stronger than they truly are, and replication studies fail to reproduce

them.

These issues are magnified by selective reporting and publication incentives. Journals tend

to favor statistically significant results, and researchers may - consciously or not - engage in

specification searching to produce them. In a high-powered setting, this bias is less dangerous:

many tests would find the true effect anyway. But when power is low, significance often comes

not from the signal, but from the noise.

Askarov et al. (2023) provide striking evidence of this pattern across empirical economics.

They show that median statistical power in leading journals is just 7%, and only 5% in the top

five journals. Despite this, the vast majority of published estimates are statistically significant.

This imbalance implies that many “discoveries” in economics are likely false positives, or at

least exaggerated in magnitude.

In such an environment, statistical significance loses its meaning. Rather than signaling that

an effect is real and robust, a p < 0.05 result may simply reflect a chance outcome, selected

and reported because it happened to be significant. This undermines the entire evidentiary

value of the literature.

In short, low power is not just a technicality: it is the core of research credibility. It weakens

our ability to learn from data, misleads policymakers, and limits trust in empirical claims.

Without sufficient power, even well-intentioned research contributes more confusion than

clarity.
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Question 3

Consider a theory that outcomes of coin tosses depend on the time of day. To test this theory, a

coin is tossed 6 times each morning; the same in the afternoon, i.e. 12 throws a day, continuing for

an entire week, Monday to Sunday.

a) How many ‘heads’ or ‘tails’ should I observe on a given morning or afternoon session to ‘reject’

the null hypothesis that the outcome is random (50/50) at a 5% level of significance?

Answer a)

Let X ∼ Binomial(n = 6, p = 0.5) denote the number of heads observed in a morning or

afternoon session. Under the null hypothesis H0 : p = 0.5, the coin is fair and the outcomes

are independent.

We are asked to determine the critical value(s) that would allow us to reject H0 at a 5% level

of significance. Because the number of tosses per session is small, the binomial distribution is

discrete and we cannot always hit exactly 5% rejection probability. Instead, we identify the

smallest critical region(s) whose total probability under the null is at most 5%.

To do so, we can either run one-sided or two-sided hypothesis tests, depending on the research

question.

A one-sided test is appropriate if the theory makes a directional claim - for example, if we

suspect that the coin is biased toward heads (or tails), but not both. In such a case, we

allocate the full 5% significance level to detecting extreme values in only one direction, which

makes the test more powerful for detecting that specific deviation.

A two-sided test, on the other hand, is used when we want to test for any deviation from

fairness, regardless of direction. If we have no prior reason to expect a bias toward heads or

tails, we split the 5% rejection region equally across both tails of the distribution. This allows

us to detect large deviations in either direction but results in stricter criteria for rejecting the

null in any one direction.

In this question, the framing (”do coin toss outcomes depend on time of day?”) suggests we’re

open to any deviation from randomness - not just a specific directional bias. Therefore, the

natural choice is a two-sided test, although for illustrative purposes we’ll analyze all three

cases: right-tailed, left-tailed, and two-sided.

Let’s start with the one-sided.

Right-tailed test: is the coin biased toward heads?

To determine whether an unusually high number of heads provides sufficient evidence to reject

the null hypothesis at the 5% significance level, we start by modeling the situation under the

null.
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Under H0, the coin is fair: each toss results in heads with probability p = 0.5, and tosses are

independent. The number of heads X observed in 6 tosses follows a Binomial distribution:

X ∼ Binomial(n = 6, p = 0.5) (36)

To conduct a right-tailed test - that is, to test whether the coin is biased toward producing

more heads - we ask: how likely is it, under the assumption of fairness, to observe x or more

heads in a session? If that probability is below 5%, we reject the null.

To construct the rejection region, we begin with the most extreme outcome (X = 6) and

check whether its probability alone is rare enough (i.e., below 5%) to justify rejection. If not,

we incrementally expand the region by including less extreme values, verifying whether the

cumulative probability remains below the threshold.

We start, then, by computing the probability of observing 6 heads:

P (X = 6) =

(
6

6

)
(0.5)6(1− 0.5)0 (37)

= 1 · (0.5)6 · 1 =
1

64
= 0.015625 (38)

This is just 1.56%, which is below our 5% cutoff - so if a session yields 6 heads, we consider

that sufficiently unlikely under the null to reject H0.

However, we must verify whether including X = 5 in the rejection region would still keep the

total probability below the 5% significance threshold. To do so, we compute the probability

of obtaining exactly 5 heads:

P (X = 5) =

(
6

5

)
(0.5)5(0.5)1 =

(
6

5

)
(0.5)6 (39)

= 6 · 1

64
=

6

64
= 0.09375 (40)

Here,
(
6
5

)
= 6 counts the number of different sequences of 6 tosses that result in exactly 5

heads. The (0.5)6 term accounts for the fact that each sequence has the same probability

under the assumption of a fair coin and independent tosses.

Summing the two gives the probability of seeing 5 or more heads:

P (X ≥ 5) = P (X = 5) + P (X = 6) = 0.09375 + 0.015625 = 0.109375 (41)

This value exceeds our 5% significance level, so we cannot reject H0 when X ≥ 5. However,

rejecting only when X = 6 gives:

P (X ≥ 6) = P (X = 6) = 0.015625 < 0.05 (42)

This ensures that the test respects the significance threshold. Therefore, in a right-tailed test

at the 5% level, we reject H0 only if all six tosses result in heads.
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This conclusion is visualized in the figure below, which shows the survival function P (X ≥ x)

for each possible number of heads. Each bar represents the probability that the number of

heads is at least x - that is, the total area in the right tail of the distribution starting from

x. This is especially useful when considering rejection regions in a one-sided test.

clear

set obs 7

* Generate x = 0 to 6

gen x = _n - 1

* Compute survival function: P(X geq x) = 1 - P(X leq x - 1)

gen surv = 1 - binomial(6, x - 1, 0.5)

* Mark rejection region for right-tailed test: only X = 6

gen reject = (x == 6)

* Plot survival function with rejection bar in red and others in grey

twoway (bar surv x if reject == 0, barw(0.8) color(gs12)) ///

(bar surv x if reject == 1, barw(0.8) color(red)) ///

(function y = 0.05, range(-0.5 6.5) lpattern(dash) lcolor(blue)) ///

, title("Survival Function: P(X geq x) for Binomial(6, 0.5)") ///

ytitle("P(X geq x)") xtitle("Number of Heads (X)") ///

ylabel(0(.1)1) xlabel(0/6, valuelabel) ///

legend(off)

graph export "$path/tables_figures/PS6/graph1.pdf", replace

In the graph (Figure 3), the red bar corresponds to P (X ≥ 6) - the only value of x for

which the survival probability falls below 0.05. The horizontal blue dashed line marks the 5%

threshold. All other bars lie above this line, indicating that they are not part of the rejection

region.

This visual representation reinforces the result we obtained analytically: the only value of X

extreme enough to justify rejection at the 5% level is 6. It also highlights a broader point:

because the binomial distribution is discrete, we cannot always get an exact 5% rejection

region. Instead, we choose the most extreme outcome(s) whose total probability remains

below α.

In small-sample or discrete-outcome settings, where exact α-level cutoffs are not always attain-

able, survival plots clearly highlight which outcomes are sufficiently rare to justify rejection.

They not only confirm the analytical results but also provide intuitive visual support for

hypothesis testing decisions.
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Figure 3: Right-tailed rejection region for X ∼ Binomial(6, 0.5). Reject if X = 6.

Left-tailed test: is the coin biased toward tails?

This case mirrors the logic of the right-tailed test, but now we are interested in whether the

coin is biased toward producing too few heads (or equivalently, too many tails). Formally, we

test:

H0 : p = 0.5 vs. H1 : p < 0.5 (43)

We reject the null if the observed number of heads is unusually low under H0. As before, we

begin by examining the most extreme case - obtaining 0 heads in 6 tosses - and then check

whether the rejection probability remains below the 5% threshold.

Using the binomial probability mass function:

P (X = 0) =

(
6

0

)
(0.5)0(0.5)6 = 1 · 1

64
= 0.015625 (44)

This is below 5%, o observing X = 0 (i.e., all tails) provides sufficient evidence to reject the

null at the 5% level. However, we must verify whether including X = 1 would push us above

the threshold. We compute:

P (X = 1) =

(
6

1

)
(0.5)1(0.5)5 = 6 · 1

64
= 0.09375 (45)

Adding these together:

P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.015625 + 0.09375 = 0.109375 (46)
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This exceeds the 5% level, so we cannot include X = 1 in the rejection region. The only value

that allows us to reject at the correct size is:

P (X ≤ 0) = 0.015625 < 0.05 (47)

Therefore, in a left-tailed test at the 5% level, we reject H0 only if all six tosses result in tails

(i.e., X = 0).

Two-sided test: is the coin biased in either direction?

We now turn to the most general scenario: testing whether the coin is biased in any direction

- either toward heads or toward tails. This corresponds to a two-sided hypothesis test:

H0 : p = 0.5 vs. H1 : p ̸= 0.5 (48)

This formulation makes sense if we have no strong prior about the direction of the bias or

simply want to test for any deviation from fairness. In such a case, the rejection region is

split between the two tails of the distribution: one in the left tail (too few heads), one in the

right tail (too many heads).

As we hinted before, our significance level is α = 0.05, which means we aim to reject H0

only when the observed outcome is among the most extreme 5% of values under the null

distribution. Still, while in a continuous setting, we would simply find critical values that

cut off 2.5% of probability mass in each tail, here because we’re working with a discrete

distribution (X ∼ Binomial(6, 0.5)), exact 2.5% tail cutoffs may not be attainable.

To proceed, we look for the smallest set of symmetric extreme outcomes - those furthest from

the mean (which is E[X] = np = 3) - whose total probability under H0 is no greater than

5%.

We begin with the most extreme possible values: X = 0: all tosses result in tails & X = 6:

all tosses result in heads, as these are the furthest values from the mean, they’re generally

more likely to be flagged as evidence against the null.

Let’s compute their probabilities:

P (X = 0) =

(
6

0

)
(0.5)6 = 1 · 1

64
= 0.015625 (49)

P (X = 6) =

(
6

6

)
(0.5)6 = 1 · 1

64
= 0.015625 (50)

Summing these gives the total probability of the proposed two-sided rejection region:

P (X = 0 or X = 6) = 0.015625 + 0.015625 = 0.03125 (51)

This is below our significance threshold α = 0.05, so this rule is valid (and each tail remains

below the notional one-sided 2.5% threshold that would apply in a continuous setting). Should

we consider adding the next most extreme values (X = 1 or X = 5)? We compute:

P (X = 1) = P (X = 5) =

(
6

1

)
(0.5)6 = 6 · 1

64
= 0.09375 (52)
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Adding just one of these values would increase the total rejection probability to:

0.03125 + 0.09375 = 0.125, (53)

which greatly exceeds 5%., violating the design of our test. So X = 0 and X = 6 are the only

values that can be included in the two-sided rejection region while maintaining control over

Type I error.

Graphically:

clear

set obs 7

* Generate x = 0 to 6

gen x = _n - 1

* Compute binomial probabilities for X ~ Binomial(6, 0.5)

gen p = binomialp(6, x, 0.5)

* Mark rejection region: 1 if x == 0 or x == 6

gen reject = inlist(x, 0, 6)

* Optional: Add 5% threshold line

twoway bar p x if reject == 0, barw(0.8) color(gs12) ///

|| bar p x if reject == 1, barw(0.8) color(red) ///

|| function y = 0.05, range(-0.5 6.5) lpattern(dash) lcolor(blue) ///

, legend(off) ytitle("P(X)") xtitle("Number of Heads (X)") ///

title("Binomial(6, 0.5) with 5% Rejection Region") ///

ylabel(0(.05)0.35) xlabel(0/6, valuelabel)

graph export "$path/tables_figures/PS6/graph2.pdf", replace

The figure below plots the full probability mass function (PMF) of the binomial distribution

with n = 6 and p = 0.5. Each bar shows the probability of observing exactly x heads. The

red bars at X = 0 and X = 6 highlight the rejection region for the two-sided test.

The horizontal blue dashed line at 0.05 provides a visual reference: any bar whose height is

below this line corresponds to a value of X that is rare enough under H0 to be included in

the rejection region. All other bars lie above this line and thus cannot be part of a valid 5%

test.

b) How likely am I to be able to write a paper with a time-of-the-day effect that is statistically

significant at the 5% level. That is, what is the chance that, if I search across all my data
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Figure 4: Two-sided rejection region for X ∼ Binomial(6, 0.5). Reject H0 if X = 0 or X = 6.

that I collected over a week, there will be at least one morning or afternoon with a run of a

head or a tail?

Answer b)

We now assess how likely it is to obtain a statistically significant result purely by chance

when conducting multiple hypothesis tests.

In this context, we are tossing a coin six times each morning and afternoon over the course

of seven days, resulting in a total of 14 independent testing sessions. In each session, we run

the same two-sided hypothesis test as described in part (a): we test whether the coin is fair

by checking if all six tosses come up heads or all come up tails.

From part (a), we know that under the null hypothesis (i.e., assuming the coin is fair), the

chance of incorrectly rejecting the null in one session - that is, observing either 6 heads or 6

tails - is approximately 3.125%:

P (reject in one session) = P (X = 0) + P (X = 6) = 2× 0.015625 = 0.03125 (54)

This is the Type I error rate for a single test: the probability of a false positive.

Now, suppose we repeat this test 14 times, once for each session during the week. Even if

the null is true in all sessions, there is still a chance that one of them will falsely appear

significant, purely due to randomness.

25



Let A denote the event that at least one rejection occurs among the 14 tests. Then, the

probability of not rejecting the null in a single session is:

P (no rejection in one session) = 1− 0.03125 = 0.96875 (55)

Assuming the 14 sessions are independent, the probability of observing no rejections at all is:

P (no rejection in any session) = (0.96875)14 ≈ 0.641 (56)

Therefore, the probability of seeing at least one false positive over the course of the week is:

P (A) = 1− (0.96875)14 ≈ 1− 0.641 = 0.359 (57)

So even if the coin is perfectly fair, there’s about a 35.9% chance that at least one session

during the week will yield a “statistically significant” result at the 5% level - purely by chance.

The result above highlights a common and often overlooked issue in empirical research: the

danger of multiple testing.

In classical hypothesis testing, the significance level (e.g., 5%) controls the probability of

making a Type I error - rejecting a true null hypothesis in a single test. However, if a

researcher performs many tests and only reports the ones that are significant, the probability

of encountering at least one false positive increases with the number of tests conducted.

In our setting, we conduct 14 separate hypothesis tests - one for each morning and afternoon

session across the week - each at a nominal 5% level. Even if the coin is truly fair in every

session, there is still a 35.9% chance that at least one session will yield a statistically significant

result just by chance.

If the researcher inspects all 14 sessions and selectively reports the one or two that seem

significant, this would constitute p-hacking - a practice that exploits randomness to generate

seemingly meaningful results (as we’re going to see later). The key issue is not the outcome of

any single test, but the fact that many opportunities were given for something “significant”

to emerge.

This illustrates why it is essential to account for multiple testing when interpreting results.

Without such adjustment, the reported findings may reflect noise rather than real effects,

especially when the analysis involves data-driven exploration or post hoc selection.

Controlling for Multiple Testing: Bonferroni and Romano-Wolf

The issue we encountered in part (b) - a 35.9% chance of seeing at least one significant result

across 14 independent tests, even if all null hypotheses are true - highlights the problem of

multiple testing. While the significance level α = 0.05 provides a bound on the probability of

a false positive in a single test, it says nothing about what happens when multiple tests are

performed. When we search across several sessions or outcomes and report only those that

look statistically significant, we substantially inflate the overall probability of making at least
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one Type I error. This phenomenon is often referred to as the multiple comparisons problem

or the family-wise error rate problem.

One common way to address this issue is to adjust the significance threshold for each indi-

vidual test so that the probability of making any false rejections across the family of tests

remains below a desired global level - typically 5%. The simplest and most widely known

method for doing this is the Bonferroni correction. The idea is straightforward: if we want

the probability of making at least one false rejection across m tests (in this case 14) to be no

greater than 0.05, we can set the per-test significance level to

αBonferroni =
0.05

14
≈ 0.0036 (58)

So instead of using the usual α = 0.05 threshold in each test, you now only reject the null in

any given session if the p-value is less than 0.0036. If we adopt this stricter threshold, then

even if we examine all 14 sessions, we are guaranteed that the probability of falsely rejecting

at least one true null remains below 5%.

Bonferroni’s appeal lies in its simplicity and ease of use. However, it is also very conservative,

particularly when the tests are not independent - as is often the case in empirical work where

outcomes or test statistics are correlated. By treating all tests as if they were independent,

Bonferroni may overcorrect, dramatically reducing the power of the test and leading to a

failure to detect genuine effects. This tradeoff between simplicity and statistical power has

motivated the development of more refined approaches.

Among the others, a famous sophisticated alternative is the Romano-Wolf1 stepdown proce-

dure, which provides a way to control the family-wise error rate without being as ”tough” as

Bonferroni. The method works by adjusting p-values in a sequential, stepwise fashion based

on the joint distribution of the test statistics. Instead of assuming independence, Romano-

Wolf uses bootstrap resampling to estimate how likely it is to observe test statistics as extreme

as the ones obtained, under the global null hypothesis (i.e., assuming that all nulls are true).

The procedure begins by ordering the test statistics from most to least significant, then tests

the largest one first - adjusting for the fact that it is the maximum - and continues sequentially.

At each step, the rejection threshold becomes less strict, reflecting the fact that if a large effect

has already been found, the chance that a smaller one is a false positive is also smaller. This

stepdown logic enables the procedure to maintain control of the family-wise error rate while

gaining statistical power over Bonferroni.

In practice, Romano-Wolf has become a preferred method in empirical economics and is

now the default in many robust standard error packages and causal inference frameworks.

Although it is computationally more intensive (because it relies on resampling), modern

software makes it readily implementable.

1By the way, Michael (Wolf) is a professor in our department and I’m sure that if you’re interested in the topics

he’ll be happy to talk more about this and many other methods!
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In sum, the Bonferroni correction offers a simple, transparent safeguard against multiple

testing but may be too conservative in practice. The Romano-Wolf procedure, by accounting

for the dependence structure among tests, provides a more powerful and reliable way to

control the risk of false discoveries when working with multiple hypotheses.

Below, there’s an application of the Romano-Wolf test in this coin toss setting.

Digression

An example of the Romano-Wolf

Suppose the data you observe over the 14 coin toss sessions look like this:

Session # Heads Reject H0?

1 (Mon AM) 3 No

2 (Mon PM) 4 No

3 (Tue AM) 6 Yes

4 (Tue PM) 0 Yes

5 (Wed AM) 2 No

6 (Wed PM) 3 No

7 (Thu AM) 6 Yes

8 (Thu PM) 5 No

9 (Fri AM) 1 No

10 (Fri PM) 3 No

11 (Sat AM) 2 No

12 (Sat PM) 4 No

13 (Sun AM) 0 Yes

14 (Sun PM) 3 No

From part (a), we know that observing X = 0 or X = 6 yields a p-value of 0.03125. So,

we have four tests that would be significant under the standard two-sided test.

Let’s set-up the test, as described before.

Step 1: Order p-values from smallest to largest

The first thing we need to do is to sort the testing procedure based on the two-sided (in

this case) p-value probabilities:
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p(1) = 0.03125 (Session 4) (59)

p(2) = 0.03125 (Session 3) (60)

p(3) = 0.03125 (Session 7) (61)

p(4) = 0.03125 (Session 13) (62)

p(5) = 0.09375 (Session 9, > 0.05) (63)

p(6), . . . , p(14) > 0.05 (64)

Step 2: Bootstrap the null distribution

We simulate many (the more the merrier, in my simulation I did 10,000) bootstrap draws

under the global nullH0: p = 0.5. For each bootstrap draw, we compute the test statistics

Ti = |Xi − µ|, where µ in our binomial is 3, for all 14 sessions and record the maximum

test statistic across the 14 sessions (i.e. 0 if there is at least one draw that is either 0 or

6; 1 if there is at least one draw that is either 1 or 5 and none which is either 0 or 6).

This gives us a bootstrap distribution of the maximum test statistic under H0. With

this statistics in mind we can go to the next step: compute the adjusted p-values for the

testing procedures.

Step 3: Compute Romano-Wolf adjusted p-values

We compare each ordered test statistic T(k) to the bootstrap distribution of the k-th

largest statistic:

- For T(1), use the max statistic in each draw - For T(2), use the second-largest - etc.

Step 4: Make decisions

Then, in my simulation the Romano-Wolf adjusted p-values are:

Session ID Observed Heads Tobs Raw p Adjusted pRW

4 0 3 0.03125 0.3546

3 6 3 0.03125 0.0680

7 6 3 0.03125 0.0075

13 0 3 0.03125 0.0007

9 1 2 0.09375 0.1746

8 5 2 0.09375 0.0682

. . .

Table 2: Romano–Wolf stepdown adjusted p-values for 14 coin-toss sessions.

We reject Sessions 3, 4, and 7 since their adjusted pRW values fall below the 5% significance

level. However, we do not reject Session 13, even though its raw p-value is identical to

the others (0.03125), because its adjusted value (0.0007) becomes higher than 0.05 after

accounting for the multiple comparisons.
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This illustrates the key strength of the Romano-Wolf procedure: it adjusts each p-value

by considering how extreme that result is in the context of all the other tests. The earliest

rejections (Sessions 7, 3, and 4) survive the adjustment because their results are among

the most extreme and unlikely under the global null. But once those are accounted for,

the bar for rejecting additional hypotheses is raised - so a test that initially looks “equally

significant” (like Session 13) may not survive once it’s no longer the top result.

In contrast, a Bonferroni correction would not have rejected any of the four, since it

demands each raw p-value to fall below 0.0036 (i.e., 0.05/14) - a threshold that none of

the tests reach. Bonferroni treats each test independently and assumes the worst-case

scenario, which makes it overly conservative and potentially blind to real effects.

Full code for simulation is below:

# Set seed for reproducibility

np.random.seed(151017)

# Observed data from 14 sessions (morning + afternoon for 7 days)

session_labels = np.array([

"Mon AM", "Mon PM", "Tue AM", "Tue PM", "Wed AM", "Wed PM", "Thu AM",

"Thu PM", "Fri AM", "Fri PM", "Sat AM", "Sat PM", "Sun AM", "Sun PM"

])

observed_heads = np.array([3, 4, 6, 0, 2, 3, 6, 5, 1, 3, 2, 4, 0, 3])

mu = 3 # Expected value under null

T_obs = np.abs(observed_heads - mu)

# Compute raw two-sided p-values based on binomial(6, 0.5)

raw_p_values = []

for x in observed_heads:

if x in [0, 6]:

raw_p_values.append(0.03125)

elif x in [1, 5]:

raw_p_values.append(0.09375)

elif x in [2, 4]:

raw_p_values.append(0.234375)

else: # x == 3

raw_p_values.append(0.3125)

raw_p_values = np.array(raw_p_values)

# Set up bootstrap
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n_sessions = len(observed_heads)

n_boot = 10000

bootstrap_stats = np.zeros((n_boot, n_sessions))

# Simulate under global null and store sorted (descending) test statistics

for b in range(n_boot):

sim_data = np.random.binomial(n=6, p=0.5, size=n_sessions)

sim_stats = np.abs(sim_data - mu)

bootstrap_stats[b, :] = np.sort(sim_stats)[::-1]

# Stepdown logic

sorted_indices = np.argsort(-T_obs)

T_obs_sorted = T_obs[sorted_indices]

p_rw = [(bootstrap_stats[:, k] >= T_obs_sorted[k]).mean() for k in range(n_sessions)]

# Collect all results

results = pd.DataFrame({

"Session ID": sorted_indices + 1, # Add 1 to match session numbering

"Observed Heads": observed_heads[sorted_indices],

"T_obs": T_obs_sorted,

"Raw p": raw_p_values[sorted_indices],

"Adjusted p_RW": p_rw

})

Question 4

Consider (and run) the following Stata code (or related R-code, use ChatGPT for translating):

set seed 12345

postfile buffer rejhack betahat rej1 rej2 using mcs2, replace

forvalues i=1/1000 {

quietly drop _all

quietly set obs 50

quietly generate x1 = rnormal()

quietly generate x2 = .5*rnormal()+x1

quietly generate y = 0*x1 + 0*x2 + rnormal()

quietly reg y x1 x2

quietly sca b11 = _b[x1]

quietly sca t1 = _b[x1]/_se[x1]

quietly sca reject1 = t1>= 1.645

quietly reg y x1
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quietly sca b12 = _b[x1]

quietly sca t2 = _b[x1]/_se[x1]

quietly sca reject2 = t2>= 1.645

quietly sca sel = t1>=0

quietly sca b = b11*sel + b12*(1-sel)

quietly sca rej = reject1*sel + reject2*(1-sel)

post buffer (rej) (b) (reject1) (reject2)

}

postclose buffer

What does the program do? In what sense is this an illustration of p−hacking, and what are the

consequences?

Answer

What does the Code do?

The program performs a Monte Carlo simulation consisting of 1,000 iterations, each designed

to study the behavior of regression-based hypothesis testing under the null - that is, in a

world where there is no true effect of the explanatory variables on the outcome.

In each iteration, the code creates an artificial dataset with n = 50 observations. The regressor

x1 is drawn independently from a standard normal distribution, that is, x1 ∼ N (0, 1). The

second regressor x2 is generated as a noisy linear transformation of x1, given by

x2 = x1+ 0.5 · ϵ, ϵ ∼ N (0, 1) (65)

This construction induces a high degree of correlation between x1 and x2, mimicking the kind

of multicollinearity often found in real-world regressions. The dependent variable y is then

generated as pure random noise, y ∼ N (0, 1), independently of both regressors. This ensures

that, by design, the true coefficients on both x1 and x2 are zero, and thus any statistically

significant result is by definition a false positive.

Thus, by construction, the true coefficients on both regressors are zero. The data-generating

process satisfies:

y = 0 · x1+ 0 · x2+ ε, ε ∼ N (0, 1) (66)

which implies that any statistically significant result in this context is necessarily a false

positive, i.e., a Type I error.

In each iteration, the program runs two regression models:

1. A full specification: reg y x1 x2, which includes both regressors.

2. A restricted specification: reg y x1, which includes only x1.

For both models, the code extracts the estimated coefficient on x1 and computes its corre-

sponding t-statistic. It then checks whether the t-statistic is above the 5% critical value in
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a one-sided test - that is, whether it exceeds 1.645. These individual rejection indicators are

stored as rej1 and rej2, and they measure whether each model would have led to a rejection

of the null hypothesis H0 : βx1 = 0 when taken on its own.

The key twist in the simulation is the introduction of a model selection step. Instead of

treating the two models as fixed or predetermined, the code chooses which specification to

report based on the observed t-statistic from the full model: if the t-statistic on x1 in the

full model is non-negative, that model is kept; if it is negative, the program discards it and

switches to the restricted model.

This selection is implemented via:

sca sel = t1 >= 0

sca b = b11*sel + b12*(1-sel)

sca rej = reject1*sel + reject2*(1-sel)

In words: the code selectively picks the model with the more favorable signal (i.e., the more

positive estimate of βx1), and then records whether the chosen model leads to a statistically

significant result. The resulting rejection indicator is stored in rejhack.

This process simulates a common, but problematic research practice: running multiple spec-

ifications and selectively reporting the one that “works”. Even though each regression on its

own maintains the nominal 5% Type I error rate, the post-hoc model switching - based on

which regression gives a more favorable result - inflates the overall false positive rate.

After all 1,000 replications, the program saves in mcs2.dta the three rejection indicators:

1. rejhack: Rejection rate after selecting the best model.

2. rej1: Rejection rate from the full model with both x1 and x2.

3. rej2: Rejection rate from the restricted model with only x1.

To inspect them and analyzed them, just run:

use mcs2, clear

summ rejhack

summ rej1

summ rej2

From these lines, I can show you:

Table 3: Rejection Rates Across Specifications
Rejection Rate

P-hacked rejection (rejhack) 0.057
(0.232)

Rejection in reg y x1 x2 (rej1) 0.046
(0.210)

Rejection in reg y x1 only (rej2) 0.055
(0.228)
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The numbers confirm our suspicion: even though the two individual models produce rejection

rates around 4.6% and 5.5%, respectively - consistent with the expected 5% size under the

null - the rejhack rule inflates this to 5.7%. This increase may seem small in absolute terms,

but it is systematic and arises purely from selecting a model post-hoc based on its apparent

statistical strength.

In short, this code illustrates how specification searching - even if limited to just two models -

can bias inference, inflate Type I errors, and lead to spurious results that appear “significant”

simply due to researcher degrees of freedom.

The code can be tweaked to strengthen the possibility of p-hacking. This is doable relatively

easy, by just switching from sca sel = t1 >= 0 to sca sel = t1 > t2.

By doing this, we find the following:

Table 4: Rejection Rates Across Specifications With Tweaked Selection
Rejection Rate

P-hacked rejection (rejhack) 0.093
(0.291)

Rejection in reg y x1 x2 (rej1) 0.046
(0.210)

Rejection in reg y x1 only (rej2) 0.055
(0.228)

The modified selection rule further amplifies the problem. By replacing the original condition

t1 >= 0 with t1 > t2, the code now systematically favors whichever model yields the higher

t-statistic for x1, regardless of sign. This seemingly minor adjustment transforms the selection

mechanism into a direct comparison of strength of statistical signal, favoring the model that

shows the greatest departure from the null - even if that departure is entirely spurious. The

practice mirrors a more aggressive form of data mining: rather than merely avoiding negative

results, it actively seeks out the most “convincing” evidence from a menu of specifications.

Importantly, this change does not affect the behavior of the two individual specifications

themselves. The regressions reg y x1 x2 and reg y x1 are each still estimated 1,000 times

on data generated under the null, and their rejection rates remain tied to the nominal 5%

level, within the bounds of simulation noise. The inflation occurs only in the aggregate,

when the researcher selects ex post which of the two estimates to report based on a favorable

criterion.

The consequence of this tweak is a notable increase in the overall false positive rate under the

rejhack strategy. The rejection rate climbs from 5.7% to 9.3% - an increase of 3.6 percentage

points. While this may seem modest at first glance, it reflects a nearly two-thirds rise in the

frequency of false discoveries due solely to post-hoc model selection. In essence, the procedure

nearly doubles the likelihood of falsely rejecting a true null, not by manipulating data, but

simply by choosing which “valid” model to present.
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Reason why it’s p-hacking

The procedure implemented in this code is a textbook example of p-hacking - in this case,

through post-hoc model selection. The researcher estimates multiple specifications and chooses,

after the fact, the one that yields the most favorable result for the variable of interest (here,

x1). This decision is not guided by theory or a pre-specified analysis plan, but rather by

which regression produces a larger (non-negative) t-statistic. In other words, the model is

selected because it makes x1 appear more significant - even when there is no true effect.

This selective reporting process fundamentally breaks the logic of classical hypothesis testing.

Under the null hypothesis, each individual test may still be correctly sized - that is, each has

a 5% chance of producing a false positive. But once you allow the researcher to pick the most

favorable result from among multiple alternatives, the overall probability of a false discovery

increases. This undermines the validity of the test: the actual chance of rejecting a true null

exceeds the nominal level, as we saw in the simulation.

Beyond just inflating the rejection rate, this practice also biases the reported effect sizes.

Because the selection process favors larger t-statistics, it systematically overstates the mag-

nitude of the estimated coefficient on x1. As a result, the published result would suggest

stronger evidence and a larger effect than is justified by the data.

The broader consequence is that findings based on this kind of post-hoc selection are un-

reliable. They appear more robust than they truly are, and their statistical significance is

illusory. Practices like this erode the credibility of empirical research, fuel the replication

crisis, and diminish confidence in statistical inference more generally. This simple simula-

tion illustrates just how easy it is to generate seemingly significant results through purely

mechanical manipulation - and how careful we must be to guard against it.
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